MakeItFrom.com
Menu (ESC)

C42600 Brass vs. 6360 Aluminum

C42600 brass belongs to the copper alloys classification, while 6360 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C42600 brass and the bottom bar is 6360 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 1.1 to 40
9.0 to 18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 280 to 470
76 to 130
Tensile Strength: Ultimate (UTS), MPa 410 to 830
120 to 220
Tensile Strength: Yield (Proof), MPa 220 to 810
57 to 170

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 1030
640
Melting Onset (Solidus), °C 1010
630
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
210
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
54
Electrical Conductivity: Equal Weight (Specific), % IACS 26
180

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 340
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
24 to 210
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 13 to 27
13 to 23
Strength to Weight: Bending, points 14 to 23
20 to 30
Thermal Diffusivity, mm2/s 33
86
Thermal Shock Resistance, points 15 to 29
5.5 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.8 to 99.3
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 87 to 90
0 to 0.15
Iron (Fe), % 0.050 to 0.2
0.1 to 0.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0.020 to 0.15
Nickel (Ni), % 0.050 to 0.2
0
Phosphorus (P), % 0.020 to 0.050
0
Silicon (Si), % 0
0.35 to 0.8
Tin (Sn), % 2.5 to 4.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 5.3 to 10.4
0 to 0.1
Residuals, % 0
0 to 0.15