MakeItFrom.com
Menu (ESC)

C42600 Brass vs. ASTM A387 Grade 21L Class 1

C42600 brass belongs to the copper alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C42600 brass and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.1 to 40
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 280 to 470
310
Tensile Strength: Ultimate (UTS), MPa 410 to 830
500
Tensile Strength: Yield (Proof), MPa 220 to 810
230

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 180
480
Melting Completion (Liquidus), °C 1030
1470
Melting Onset (Solidus), °C 1010
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.1
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 48
23
Embodied Water, L/kg 340
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
84
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
140
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 13 to 27
18
Strength to Weight: Bending, points 14 to 23
18
Thermal Diffusivity, mm2/s 33
11
Thermal Shock Resistance, points 15 to 29
14

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 87 to 90
0
Iron (Fe), % 0.050 to 0.2
94.4 to 96.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.050 to 0.2
0
Phosphorus (P), % 0.020 to 0.050
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 4.0
0
Zinc (Zn), % 5.3 to 10.4
0
Residuals, % 0 to 0.2
0