MakeItFrom.com
Menu (ESC)

C42600 Brass vs. CC382H Copper-nickel

Both C42600 brass and CC382H copper-nickel are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C42600 brass and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 1.1 to 40
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
53
Tensile Strength: Ultimate (UTS), MPa 410 to 830
490
Tensile Strength: Yield (Proof), MPa 220 to 810
290

Thermal Properties

Latent Heat of Fusion, J/g 200
240
Maximum Temperature: Mechanical, °C 180
260
Melting Completion (Liquidus), °C 1030
1180
Melting Onset (Solidus), °C 1010
1120
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 110
30
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 26
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
41
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.9
5.2
Embodied Energy, MJ/kg 48
76
Embodied Water, L/kg 340
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
85
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
290
Stiffness to Weight: Axial, points 7.1
8.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 13 to 27
15
Strength to Weight: Bending, points 14 to 23
16
Thermal Diffusivity, mm2/s 33
8.2
Thermal Shock Resistance, points 15 to 29
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 87 to 90
62.8 to 68.4
Iron (Fe), % 0.050 to 0.2
0.5 to 1.0
Lead (Pb), % 0 to 0.050
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0.050 to 0.2
29 to 32
Phosphorus (P), % 0.020 to 0.050
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Tin (Sn), % 2.5 to 4.0
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 5.3 to 10.4
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.2
0