MakeItFrom.com
Menu (ESC)

C43000 Brass vs. ACI-ASTM CA28MWV Steel

C43000 brass belongs to the copper alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
11
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 320 to 710
1080
Tensile Strength: Yield (Proof), MPa 130 to 550
870

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 1030
1470
Melting Onset (Solidus), °C 1000
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 46
44
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
1920
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
38
Strength to Weight: Bending, points 12 to 20
30
Thermal Diffusivity, mm2/s 36
6.6
Thermal Shock Resistance, points 11 to 25
40

Alloy Composition

Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
81.4 to 85.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0