MakeItFrom.com
Menu (ESC)

C43000 Brass vs. AISI 317LM Stainless Steel

C43000 brass belongs to the copper alloys classification, while AISI 317LM stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is AISI 317LM stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
46
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 30 to 100
82
Shear Modulus, GPa 42
79
Shear Strength, MPa 230 to 410
410
Tensile Strength: Ultimate (UTS), MPa 320 to 710
590
Tensile Strength: Yield (Proof), MPa 130 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
300
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1000
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
24
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 46
65
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
130
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
21
Strength to Weight: Bending, points 12 to 20
20
Thermal Diffusivity, mm2/s 36
3.8
Thermal Shock Resistance, points 11 to 25
13

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
54.4 to 64.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
13.5 to 17.5
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0