MakeItFrom.com
Menu (ESC)

C43000 Brass vs. ASTM A387 Grade 12 Steel

C43000 brass belongs to the copper alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 230 to 410
300 to 330
Tensile Strength: Ultimate (UTS), MPa 320 to 710
470 to 520
Tensile Strength: Yield (Proof), MPa 130 to 550
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 1030
1470
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.8
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 46
21
Embodied Water, L/kg 330
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
180 to 250
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 23
16 to 18
Strength to Weight: Bending, points 12 to 20
17 to 18
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 11 to 25
14 to 15

Alloy Composition

Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
97 to 98.2
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0