MakeItFrom.com
Menu (ESC)

C43000 Brass vs. EN 1.4552 Stainless Steel

C43000 brass belongs to the copper alloys classification, while EN 1.4552 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is EN 1.4552 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
29
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 320 to 710
510
Tensile Strength: Yield (Proof), MPa 130 to 550
200

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1000
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
100
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
18
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 36
4.1
Thermal Shock Resistance, points 11 to 25
11

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
63.9 to 73
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0