MakeItFrom.com
Menu (ESC)

C43000 Brass vs. EN 1.4849 Stainless Steel

C43000 brass belongs to the copper alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
4.5
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 320 to 710
480
Tensile Strength: Yield (Proof), MPa 130 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 1030
1390
Melting Onset (Solidus), °C 1000
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 18
15

Otherwise Unclassified Properties

Base Metal Price, % relative 29
42
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
7.1
Embodied Energy, MJ/kg 46
100
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
18
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
160
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 23
17
Strength to Weight: Bending, points 12 to 20
17
Thermal Diffusivity, mm2/s 36
3.2
Thermal Shock Resistance, points 11 to 25
11

Alloy Composition

Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
32.6 to 43.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0