MakeItFrom.com
Menu (ESC)

C43000 Brass vs. EN 1.4852 Stainless Steel

C43000 brass belongs to the copper alloys classification, while EN 1.4852 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
4.6
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 320 to 710
490
Tensile Strength: Yield (Proof), MPa 130 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1380
Melting Onset (Solidus), °C 1000
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
6.9
Embodied Energy, MJ/kg 46
100
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
19
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
160
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
17
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 36
3.4
Thermal Shock Resistance, points 11 to 25
11

Alloy Composition

Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
29.6 to 40.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0