MakeItFrom.com
Menu (ESC)

C43000 Brass vs. EN 1.4887 Stainless Steel

C43000 brass belongs to the copper alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 230 to 410
400
Tensile Strength: Ultimate (UTS), MPa 320 to 710
580
Tensile Strength: Yield (Proof), MPa 130 to 550
300

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1390
Melting Onset (Solidus), °C 1000
1350
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
39
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.7
Embodied Energy, MJ/kg 46
96
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
220
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
230
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 23
20
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 36
3.2
Thermal Shock Resistance, points 11 to 25
14

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
34.2 to 45
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0