MakeItFrom.com
Menu (ESC)

C43000 Brass vs. CC382H Copper-nickel

Both C43000 brass and CC382H copper-nickel are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 3.0 to 55
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
53
Tensile Strength: Ultimate (UTS), MPa 320 to 710
490
Tensile Strength: Yield (Proof), MPa 130 to 550
290

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 1030
1180
Melting Onset (Solidus), °C 1000
1120
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.2
Embodied Energy, MJ/kg 46
76
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
85
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
290
Stiffness to Weight: Axial, points 7.1
8.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 10 to 23
15
Strength to Weight: Bending, points 12 to 20
16
Thermal Diffusivity, mm2/s 36
8.2
Thermal Shock Resistance, points 11 to 25
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 84 to 87
62.8 to 68.4
Iron (Fe), % 0 to 0.050
0.5 to 1.0
Lead (Pb), % 0 to 0.1
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Tin (Sn), % 1.7 to 2.7
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 9.7 to 14.3
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0