MakeItFrom.com
Menu (ESC)

C43000 Brass vs. Grade CW6MC Nickel

C43000 brass belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 320 to 710
540
Tensile Strength: Yield (Proof), MPa 130 to 550
310

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1030
1480
Melting Onset (Solidus), °C 1000
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.8
14
Embodied Energy, MJ/kg 46
200
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
240
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 10 to 23
18
Strength to Weight: Bending, points 12 to 20
17
Thermal Diffusivity, mm2/s 36
2.8
Thermal Shock Resistance, points 11 to 25
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
0 to 5.0
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0