MakeItFrom.com
Menu (ESC)

C43000 Brass vs. SAE-AISI 4340 Steel

C43000 brass belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
12 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 230 to 410
430 to 770
Tensile Strength: Ultimate (UTS), MPa 320 to 710
690 to 1280
Tensile Strength: Yield (Proof), MPa 130 to 550
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.5
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 46
22
Embodied Water, L/kg 330
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
590 to 3490
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 23
24 to 45
Strength to Weight: Bending, points 12 to 20
22 to 33
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 11 to 25
20 to 38

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
95.1 to 96.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0