MakeItFrom.com
Menu (ESC)

C43000 Brass vs. C87800 Brass

Both C43000 brass and C87800 brass are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0 to 55
25
Poisson's Ratio 0.33
0.33
Rockwell B Hardness 30 to 100
86
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 320 to 710
590
Tensile Strength: Yield (Proof), MPa 130 to 550
350

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1030
920
Melting Onset (Solidus), °C 1000
820
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
27
Density, g/cm3 8.6
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
44
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
540
Stiffness to Weight: Axial, points 7.1
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 10 to 23
20
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 36
8.3
Thermal Shock Resistance, points 11 to 25
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 84 to 87
80 to 84.2
Iron (Fe), % 0 to 0.050
0 to 0.15
Lead (Pb), % 0 to 0.1
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.7 to 2.7
0 to 0.25
Zinc (Zn), % 9.7 to 14.3
12 to 16
Residuals, % 0
0 to 0.5