MakeItFrom.com
Menu (ESC)

C43000 Brass vs. N06250 Nickel

C43000 brass belongs to the copper alloys classification, while N06250 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is N06250 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 55
46
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
82
Shear Strength, MPa 230 to 410
500
Tensile Strength: Ultimate (UTS), MPa 320 to 710
710
Tensile Strength: Yield (Proof), MPa 130 to 550
270

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1030
1490
Melting Onset (Solidus), °C 1000
1440
Specific Heat Capacity, J/kg-K 380
440
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
260
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
170
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 10 to 23
23
Strength to Weight: Bending, points 12 to 20
21
Thermal Shock Resistance, points 11 to 25
19

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 84 to 87
0.25 to 1.3
Iron (Fe), % 0 to 0.050
7.4 to 19.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
10.1 to 12
Nickel (Ni), % 0
50 to 54
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.090
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 1.7 to 2.7
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0