MakeItFrom.com
Menu (ESC)

C43000 Brass vs. S35315 Stainless Steel

C43000 brass belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
46
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 30 to 100
82
Shear Modulus, GPa 42
78
Shear Strength, MPa 230 to 410
520
Tensile Strength: Ultimate (UTS), MPa 320 to 710
740
Tensile Strength: Yield (Proof), MPa 130 to 550
300

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1370
Melting Onset (Solidus), °C 1000
1330
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.7
Embodied Energy, MJ/kg 46
81
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
270
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
230
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
26
Strength to Weight: Bending, points 12 to 20
23
Thermal Diffusivity, mm2/s 36
3.1
Thermal Shock Resistance, points 11 to 25
17

Alloy Composition

Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
33.6 to 40.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0