MakeItFrom.com
Menu (ESC)

C43000 Brass vs. S44626 Stainless Steel

C43000 brass belongs to the copper alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
23
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 30 to 100
83
Shear Modulus, GPa 42
80
Shear Strength, MPa 230 to 410
340
Tensile Strength: Ultimate (UTS), MPa 320 to 710
540
Tensile Strength: Yield (Proof), MPa 130 to 550
350

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1000
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
14
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
300
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 10 to 23
19
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 36
4.6
Thermal Shock Resistance, points 11 to 25
18

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 84 to 87
0 to 0.2
Iron (Fe), % 0 to 0.050
68.1 to 74.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.7 to 2.7
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0