MakeItFrom.com
Menu (ESC)

C43400 Brass vs. 4004 Aluminum

C43400 brass belongs to the copper alloys classification, while 4004 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C43400 brass and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 3.0 to 49
2.4
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
27
Shear Strength, MPa 250 to 390
63
Tensile Strength: Ultimate (UTS), MPa 310 to 690
110
Tensile Strength: Yield (Proof), MPa 110 to 560
60

Thermal Properties

Latent Heat of Fusion, J/g 190
540
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 1020
600
Melting Onset (Solidus), °C 990
560
Specific Heat Capacity, J/kg-K 380
910
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
33
Electrical Conductivity: Equal Weight (Specific), % IACS 32
120

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
25
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
54
Strength to Weight: Axial, points 10 to 22
12
Strength to Weight: Bending, points 12 to 20
20
Thermal Diffusivity, mm2/s 41
58
Thermal Shock Resistance, points 11 to 24
5.1

Alloy Composition

Aluminum (Al), % 0
86 to 90
Copper (Cu), % 84 to 87
0 to 0.25
Iron (Fe), % 0 to 0.050
0 to 0.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
9.0 to 10.5
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0 to 0.2
Residuals, % 0
0 to 0.15