MakeItFrom.com
Menu (ESC)

C43400 Brass vs. 5088 Aluminum

C43400 brass belongs to the copper alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C43400 brass and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 3.0 to 49
29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
25
Shear Strength, MPa 250 to 390
200
Tensile Strength: Ultimate (UTS), MPa 310 to 690
310
Tensile Strength: Yield (Proof), MPa 110 to 560
150

Thermal Properties

Latent Heat of Fusion, J/g 190
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1020
640
Melting Onset (Solidus), °C 990
540
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
29
Electrical Conductivity: Equal Weight (Specific), % IACS 32
98

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 2.7
9.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
76
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 10 to 22
32
Strength to Weight: Bending, points 12 to 20
38
Thermal Diffusivity, mm2/s 41
51
Thermal Shock Resistance, points 11 to 24
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.8
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 84 to 87
0 to 0.25
Iron (Fe), % 0 to 0.050
0.1 to 0.35
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0
0.2 to 0.5
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15