MakeItFrom.com
Menu (ESC)

C43400 Brass vs. 7129 Aluminum

C43400 brass belongs to the copper alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C43400 brass and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 3.0 to 49
9.0 to 9.1
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 250 to 390
250 to 260
Tensile Strength: Ultimate (UTS), MPa 310 to 690
430
Tensile Strength: Yield (Proof), MPa 110 to 560
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1020
630
Melting Onset (Solidus), °C 990
510
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
40
Electrical Conductivity: Equal Weight (Specific), % IACS 32
120

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.6
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
1050 to 1090
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 10 to 22
41
Strength to Weight: Bending, points 12 to 20
43 to 44
Thermal Diffusivity, mm2/s 41
58
Thermal Shock Resistance, points 11 to 24
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 84 to 87
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.050
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 11.4 to 15.6
4.2 to 5.2
Residuals, % 0
0 to 0.15