MakeItFrom.com
Menu (ESC)

C43400 Brass vs. EN 1.0108 Steel

C43400 brass belongs to the copper alloys classification, while EN 1.0108 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
29
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 250 to 390
250
Tensile Strength: Ultimate (UTS), MPa 310 to 690
380
Tensile Strength: Yield (Proof), MPa 110 to 560
200

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 140
50
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.1
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
94
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
110
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 22
13
Strength to Weight: Bending, points 12 to 20
15
Thermal Diffusivity, mm2/s 41
13
Thermal Shock Resistance, points 11 to 24
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 84 to 87
0 to 0.3
Iron (Fe), % 0 to 0.050
97.5 to 99.98
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0