MakeItFrom.com
Menu (ESC)

C43400 Brass vs. EN 1.0225 Steel

C43400 brass belongs to the copper alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
6.7 to 24
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 250 to 390
280 to 290
Tensile Strength: Ultimate (UTS), MPa 310 to 690
440 to 500
Tensile Strength: Yield (Proof), MPa 110 to 560
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
140 to 390
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 22
16 to 18
Strength to Weight: Bending, points 12 to 20
16 to 18
Thermal Diffusivity, mm2/s 41
14
Thermal Shock Resistance, points 11 to 24
14 to 16

Alloy Composition

Carbon (C), % 0
0 to 0.21
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
98 to 100
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0