MakeItFrom.com
Menu (ESC)

C43400 Brass vs. EN 1.0601 Steel

C43400 brass belongs to the copper alloys classification, while EN 1.0601 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is EN 1.0601 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Shear Strength, MPa 250 to 390
430
Tensile Strength: Ultimate (UTS), MPa 310 to 690
730
Tensile Strength: Yield (Proof), MPa 110 to 560
350

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 140
48
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.1
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
65
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
330
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 22
26
Strength to Weight: Bending, points 12 to 20
23
Thermal Diffusivity, mm2/s 41
13
Thermal Shock Resistance, points 11 to 24
23

Alloy Composition

Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
97.1 to 98.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0