MakeItFrom.com
Menu (ESC)

C43400 Brass vs. EN 1.4611 Stainless Steel

C43400 brass belongs to the copper alloys classification, while EN 1.4611 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is EN 1.4611 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
78
Shear Strength, MPa 250 to 390
330
Tensile Strength: Ultimate (UTS), MPa 310 to 690
530
Tensile Strength: Yield (Proof), MPa 110 to 560
280

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
970
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 990
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 44
36
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
91
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
190
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
19
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 41
5.7
Thermal Shock Resistance, points 11 to 24
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 84 to 87
0 to 0.5
Iron (Fe), % 0 to 0.050
73.3 to 80.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0