MakeItFrom.com
Menu (ESC)

C43400 Brass vs. EN 1.7362 Steel

C43400 brass belongs to the copper alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
21 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 250 to 390
320 to 370
Tensile Strength: Ultimate (UTS), MPa 310 to 690
510 to 600
Tensile Strength: Yield (Proof), MPa 110 to 560
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 32
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.5
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 320
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
100 to 340
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
18 to 21
Strength to Weight: Bending, points 12 to 20
18 to 20
Thermal Diffusivity, mm2/s 41
11
Thermal Shock Resistance, points 11 to 24
14 to 17

Alloy Composition

Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 84 to 87
0 to 0.3
Iron (Fe), % 0 to 0.050
91.5 to 95.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0