MakeItFrom.com
Menu (ESC)

C43400 Brass vs. EN 1.7366 Steel

C43400 brass belongs to the copper alloys classification, while EN 1.7366 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is EN 1.7366 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
17 to 19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 250 to 390
290 to 440
Tensile Strength: Ultimate (UTS), MPa 310 to 690
460 to 710
Tensile Strength: Yield (Proof), MPa 110 to 560
230 to 480

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 32
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.3
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 320
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
74 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
140 to 600
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
16 to 25
Strength to Weight: Bending, points 12 to 20
17 to 23
Thermal Diffusivity, mm2/s 41
11
Thermal Shock Resistance, points 11 to 24
13 to 20

Alloy Composition

Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
91.9 to 95.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0