MakeItFrom.com
Menu (ESC)

C43400 Brass vs. Grade 18 Titanium

C43400 brass belongs to the copper alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0 to 49
11 to 17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Shear Strength, MPa 250 to 390
420 to 590
Tensile Strength: Ultimate (UTS), MPa 310 to 690
690 to 980
Tensile Strength: Yield (Proof), MPa 110 to 560
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 1020
1640
Melting Onset (Solidus), °C 990
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 140
8.3
Thermal Expansion, µm/m-K 19
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.6
4.5
Embodied Carbon, kg CO2/kg material 2.7
41
Embodied Energy, MJ/kg 44
670
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
1380 to 3110
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 10 to 22
43 to 61
Strength to Weight: Bending, points 12 to 20
39 to 49
Thermal Diffusivity, mm2/s 41
3.4
Thermal Shock Resistance, points 11 to 24
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 84 to 87
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0
0 to 0.4