MakeItFrom.com
Menu (ESC)

C43400 Brass vs. S17700 Stainless Steel

C43400 brass belongs to the copper alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
1.0 to 23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 250 to 390
740 to 940
Tensile Strength: Ultimate (UTS), MPa 310 to 690
1180 to 1650
Tensile Strength: Yield (Proof), MPa 110 to 560
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 990
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
460 to 3750
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
42 to 59
Strength to Weight: Bending, points 12 to 20
32 to 40
Thermal Diffusivity, mm2/s 41
4.1
Thermal Shock Resistance, points 11 to 24
39 to 54

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
70.5 to 76.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0