MakeItFrom.com
Menu (ESC)

C43500 Brass vs. AISI 304Cu Stainless Steel

C43500 brass belongs to the copper alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.5 to 46
45
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 310
370
Tensile Strength: Ultimate (UTS), MPa 320 to 530
530
Tensile Strength: Yield (Proof), MPa 120 to 480
210

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
930
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 970
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
16
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 17
19
Strength to Weight: Bending, points 12 to 17
19
Thermal Diffusivity, mm2/s 37
3.5
Thermal Shock Resistance, points 11 to 18
12

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 79 to 83
3.0 to 4.0
Iron (Fe), % 0 to 0.050
63.9 to 72
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0