MakeItFrom.com
Menu (ESC)

C43500 Brass vs. SAE-AISI 4140 Steel

C43500 brass belongs to the copper alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.5 to 46
11 to 26
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 220 to 310
410 to 660
Tensile Strength: Ultimate (UTS), MPa 320 to 530
690 to 1080
Tensile Strength: Yield (Proof), MPa 120 to 480
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.4
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 45
20
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
920 to 2590
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 17
25 to 38
Strength to Weight: Bending, points 12 to 17
22 to 30
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 11 to 18
20 to 32

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.050
96.8 to 97.8
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.6 to 1.2
0
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0