MakeItFrom.com
Menu (ESC)

C43500 Brass vs. C82800 Copper

Both C43500 brass and C82800 copper are copper alloys. They have 81% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.5 to 46
1.0 to 20
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
46
Tensile Strength: Ultimate (UTS), MPa 320 to 530
670 to 1140
Tensile Strength: Yield (Proof), MPa 120 to 480
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 160
310
Melting Completion (Liquidus), °C 1000
930
Melting Onset (Solidus), °C 970
890
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
18
Electrical Conductivity: Equal Weight (Specific), % IACS 30
19

Otherwise Unclassified Properties

Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 45
190
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
590 to 4080
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 10 to 17
21 to 36
Strength to Weight: Bending, points 12 to 17
20 to 28
Thermal Diffusivity, mm2/s 37
36
Thermal Shock Resistance, points 11 to 18
23 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 79 to 83
94.6 to 97.2
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.090
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0.6 to 1.2
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 15.4 to 20.4
0 to 0.1
Residuals, % 0
0 to 0.5