MakeItFrom.com
Menu (ESC)

C43500 Brass vs. N08120 Nickel

C43500 brass belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 46
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 220 to 310
470
Tensile Strength: Ultimate (UTS), MPa 320 to 530
700
Tensile Strength: Yield (Proof), MPa 120 to 480
310

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 970
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
45
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 45
100
Embodied Water, L/kg 320
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 17
24
Strength to Weight: Bending, points 12 to 17
21
Thermal Diffusivity, mm2/s 37
3.0
Thermal Shock Resistance, points 11 to 18
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 79 to 83
0 to 0.5
Iron (Fe), % 0 to 0.050
21 to 41.4
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0