MakeItFrom.com
Menu (ESC)

C43500 Brass vs. ZE63A Magnesium

C43500 brass belongs to the copper alloys classification, while ZE63A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C43500 brass and the bottom bar is ZE63A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
46
Elongation at Break, % 8.5 to 46
7.7
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
17
Shear Strength, MPa 220 to 310
170
Tensile Strength: Ultimate (UTS), MPa 320 to 530
300
Tensile Strength: Yield (Proof), MPa 120 to 480
190

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 1000
510
Melting Onset (Solidus), °C 970
390
Specific Heat Capacity, J/kg-K 380
950
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 19
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
31
Electrical Conductivity: Equal Weight (Specific), % IACS 30
140

Otherwise Unclassified Properties

Base Metal Price, % relative 28
22
Density, g/cm3 8.5
2.0
Embodied Carbon, kg CO2/kg material 2.7
24
Embodied Energy, MJ/kg 45
180
Embodied Water, L/kg 320
920

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
20
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
400
Stiffness to Weight: Axial, points 7.2
12
Stiffness to Weight: Bending, points 19
58
Strength to Weight: Axial, points 10 to 17
40
Strength to Weight: Bending, points 12 to 17
48
Thermal Diffusivity, mm2/s 37
57
Thermal Shock Resistance, points 11 to 18
17

Alloy Composition

Copper (Cu), % 79 to 83
0 to 0.1
Iron (Fe), % 0 to 0.050
0
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
89.6 to 92
Nickel (Ni), % 0
0 to 0.010
Tin (Sn), % 0.6 to 1.2
0
Unspecified Rare Earths, % 0
2.1 to 3.0
Zinc (Zn), % 15.4 to 20.4
5.5 to 6.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3