MakeItFrom.com
Menu (ESC)

C44300 Brass vs. 2017 Aluminum

C44300 brass belongs to the copper alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44300 brass and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 350
190 to 430
Tensile Strength: Yield (Proof), MPa 120
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 140
190
Melting Completion (Liquidus), °C 940
640
Melting Onset (Solidus), °C 900
510
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
38
Electrical Conductivity: Equal Weight (Specific), % IACS 27
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
10
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1140

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
41 to 470
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 12
17 to 40
Strength to Weight: Bending, points 13
24 to 42
Thermal Diffusivity, mm2/s 35
56
Thermal Shock Resistance, points 12
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Arsenic (As), % 0.020 to 0.060
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 70 to 73
3.5 to 4.5
Iron (Fe), % 0 to 0.060
0 to 0.7
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0
0.2 to 0.8
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 25.2 to 29.1
0 to 0.25
Residuals, % 0
0 to 0.15