MakeItFrom.com
Menu (ESC)

C44300 Brass vs. 242.0 Aluminum

C44300 brass belongs to the copper alloys classification, while 242.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44300 brass and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
73
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 350
180 to 290
Tensile Strength: Yield (Proof), MPa 120
120 to 220

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 140
210
Melting Completion (Liquidus), °C 940
640
Melting Onset (Solidus), °C 900
530
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 110
130 to 170
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
33 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 27
96 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.3
3.1
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
110 to 340
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 12
16 to 26
Strength to Weight: Bending, points 13
23 to 32
Thermal Diffusivity, mm2/s 35
50 to 62
Thermal Shock Resistance, points 12
8.0 to 13

Alloy Composition

Aluminum (Al), % 0
88.4 to 93.6
Arsenic (As), % 0.020 to 0.060
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 70 to 73
3.5 to 4.5
Iron (Fe), % 0 to 0.060
0 to 1.0
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 0
0 to 0.7
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 25.2 to 29.1
0 to 0.35
Residuals, % 0
0 to 0.15