MakeItFrom.com
Menu (ESC)

C44300 Brass vs. 5082 Aluminum

C44300 brass belongs to the copper alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44300 brass and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
67
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
25
Tensile Strength: Ultimate (UTS), MPa 350
380 to 400
Tensile Strength: Yield (Proof), MPa 120
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 140
180
Melting Completion (Liquidus), °C 940
640
Melting Onset (Solidus), °C 900
560
Specific Heat Capacity, J/kg-K 380
910
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
32
Electrical Conductivity: Equal Weight (Specific), % IACS 27
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
670 to 870
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 12
39 to 41
Strength to Weight: Bending, points 13
43 to 45
Thermal Diffusivity, mm2/s 35
54
Thermal Shock Resistance, points 12
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Arsenic (As), % 0.020 to 0.060
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 70 to 73
0 to 0.15
Iron (Fe), % 0 to 0.060
0 to 0.35
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0
0 to 0.15
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 25.2 to 29.1
0 to 0.25
Residuals, % 0
0 to 0.15