MakeItFrom.com
Menu (ESC)

C44300 Brass vs. 6065 Aluminum

C44300 brass belongs to the copper alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44300 brass and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 350
310 to 400
Tensile Strength: Yield (Proof), MPa 120
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 140
180
Melting Completion (Liquidus), °C 940
640
Melting Onset (Solidus), °C 900
590
Specific Heat Capacity, J/kg-K 380
890
Thermal Conductivity, W/m-K 110
170
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
43
Electrical Conductivity: Equal Weight (Specific), % IACS 27
140

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1200

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
540 to 1040
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12
31 to 40
Strength to Weight: Bending, points 13
36 to 43
Thermal Diffusivity, mm2/s 35
67
Thermal Shock Resistance, points 12
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Arsenic (As), % 0.020 to 0.060
0
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 70 to 73
0.15 to 0.4
Iron (Fe), % 0 to 0.060
0 to 0.7
Lead (Pb), % 0 to 0.070
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Silicon (Si), % 0
0.4 to 0.8
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 25.2 to 29.1
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15