MakeItFrom.com
Menu (ESC)

C44300 Brass vs. A390.0 Aluminum

C44300 brass belongs to the copper alloys classification, while A390.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44300 brass and the bottom bar is A390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
75
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
28
Tensile Strength: Ultimate (UTS), MPa 350
190 to 290
Tensile Strength: Yield (Proof), MPa 120
190 to 290

Thermal Properties

Latent Heat of Fusion, J/g 180
640
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 940
580
Melting Onset (Solidus), °C 900
480
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
20
Electrical Conductivity: Equal Weight (Specific), % IACS 27
67

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 2.8
7.3
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 330
950

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
240 to 580
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
52
Strength to Weight: Axial, points 12
19 to 30
Strength to Weight: Bending, points 13
27 to 36
Thermal Diffusivity, mm2/s 35
56
Thermal Shock Resistance, points 12
9.0 to 14

Alloy Composition

Aluminum (Al), % 0
75.3 to 79.6
Arsenic (As), % 0.020 to 0.060
0
Copper (Cu), % 70 to 73
4.0 to 5.0
Iron (Fe), % 0 to 0.060
0 to 0.5
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
16 to 18
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 25.2 to 29.1
0 to 0.1
Residuals, % 0
0 to 0.2