MakeItFrom.com
Menu (ESC)

C44400 Brass vs. 2618 Aluminum

C44400 brass belongs to the copper alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44400 brass and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 350
420
Tensile Strength: Yield (Proof), MPa 120
350

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 140
210
Melting Completion (Liquidus), °C 940
640
Melting Onset (Solidus), °C 900
550
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
37
Electrical Conductivity: Equal Weight (Specific), % IACS 27
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1150

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
850
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 12
40
Strength to Weight: Bending, points 13
42
Thermal Diffusivity, mm2/s 35
62
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Antimony (Sb), % 0.020 to 0.1
0
Copper (Cu), % 70 to 73
1.9 to 2.7
Iron (Fe), % 0 to 0.060
0.9 to 1.3
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
1.3 to 1.8
Nickel (Ni), % 0
0.9 to 1.2
Silicon (Si), % 0
0.1 to 0.25
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0.040 to 0.1
Zinc (Zn), % 25.2 to 29.1
0 to 0.1
Residuals, % 0
0 to 0.15