MakeItFrom.com
Menu (ESC)

C44400 Brass vs. AWS E320

C44400 brass belongs to the copper alloys classification, while AWS E320 belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C44400 brass and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 350
620

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 900
1360
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 20
14

Otherwise Unclassified Properties

Base Metal Price, % relative 26
38
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.5
Embodied Energy, MJ/kg 46
91
Embodied Water, L/kg 330
220

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
21
Strength to Weight: Bending, points 13
20
Thermal Shock Resistance, points 12
16

Alloy Composition

Antimony (Sb), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 70 to 73
3.0 to 4.0
Iron (Fe), % 0 to 0.060
31.8 to 43.5
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.9 to 1.2
0
Zinc (Zn), % 25.2 to 29.1
0
Residuals, % 0 to 0.4
0