MakeItFrom.com
Menu (ESC)

C46200 Brass vs. 2017 Aluminum

C46200 brass belongs to the copper alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C46200 brass and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 17 to 34
12 to 18
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 240 to 290
130 to 260
Tensile Strength: Ultimate (UTS), MPa 370 to 480
190 to 430
Tensile Strength: Yield (Proof), MPa 120 to 290
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 840
640
Melting Onset (Solidus), °C 800
510
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 20
24

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
41 to 470
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 13 to 16
17 to 40
Strength to Weight: Bending, points 14 to 17
24 to 42
Thermal Diffusivity, mm2/s 35
56
Thermal Shock Resistance, points 12 to 16
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 62 to 65
3.5 to 4.5
Iron (Fe), % 0 to 0.1
0 to 0.7
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0
0.2 to 0.8
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 33.3 to 37.5
0 to 0.25
Residuals, % 0
0 to 0.15