MakeItFrom.com
Menu (ESC)

C46200 Brass vs. 5042 Aluminum

C46200 brass belongs to the copper alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C46200 brass and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 17 to 34
1.1 to 3.4
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 240 to 290
200
Tensile Strength: Ultimate (UTS), MPa 370 to 480
340 to 360
Tensile Strength: Yield (Proof), MPa 120 to 290
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 840
640
Melting Onset (Solidus), °C 800
570
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 20
24

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.8
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
550 to 720
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 13 to 16
35 to 37
Strength to Weight: Bending, points 14 to 17
40 to 42
Thermal Diffusivity, mm2/s 35
53
Thermal Shock Resistance, points 12 to 16
15 to 16

Alloy Composition

Aluminum (Al), % 0
94.2 to 96.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 62 to 65
0 to 0.15
Iron (Fe), % 0 to 0.1
0 to 0.35
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
3.0 to 4.0
Manganese (Mn), % 0
0.2 to 0.5
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 33.3 to 37.5
0 to 0.25
Residuals, % 0
0 to 0.15