MakeItFrom.com
Menu (ESC)

C46200 Brass vs. ACI-ASTM CB7Cu-1 Steel

C46200 brass belongs to the copper alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17 to 34
5.7 to 11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 370 to 480
960 to 1350
Tensile Strength: Yield (Proof), MPa 120 to 290
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Melting Completion (Liquidus), °C 840
1430
Melting Onset (Solidus), °C 800
1500
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
17
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
38
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
1500 to 3590
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 16
34 to 48
Strength to Weight: Bending, points 14 to 17
28 to 35
Thermal Diffusivity, mm2/s 35
4.6
Thermal Shock Resistance, points 12 to 16
32 to 45

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15.5 to 17.7
Copper (Cu), % 62 to 65
2.5 to 3.2
Iron (Fe), % 0 to 0.1
72.3 to 78.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0