MakeItFrom.com
Menu (ESC)

C46200 Brass vs. AISI 420 Stainless Steel

C46200 brass belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17 to 34
8.0 to 15
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240 to 290
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 370 to 480
690 to 1720
Tensile Strength: Yield (Proof), MPa 120 to 290
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
620
Melting Completion (Liquidus), °C 840
1510
Melting Onset (Solidus), °C 800
1450
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
27
Thermal Expansion, µm/m-K 20
10

Otherwise Unclassified Properties

Base Metal Price, % relative 24
7.5
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
380 to 4410
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 16
25 to 62
Strength to Weight: Bending, points 14 to 17
22 to 41
Thermal Diffusivity, mm2/s 35
7.3
Thermal Shock Resistance, points 12 to 16
25 to 62

Alloy Composition

Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
82.3 to 87.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0