MakeItFrom.com
Menu (ESC)

C46200 Brass vs. EN 1.7233 Steel

C46200 brass belongs to the copper alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17 to 34
18 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 290
450 to 590
Tensile Strength: Ultimate (UTS), MPa 370 to 480
700 to 960
Tensile Strength: Yield (Proof), MPa 120 to 290
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
430
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 20
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 46
21
Embodied Water, L/kg 330
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
380 to 1630
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 16
25 to 34
Strength to Weight: Bending, points 14 to 17
22 to 28
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 12 to 16
21 to 28

Alloy Composition

Carbon (C), % 0
0.39 to 0.45
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
96.2 to 97.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0