MakeItFrom.com
Menu (ESC)

C46200 Brass vs. Grade Ti-Pd18 Titanium

C46200 brass belongs to the copper alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 17 to 34
17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 370 to 480
710
Tensile Strength: Yield (Proof), MPa 120 to 290
540

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
330
Melting Completion (Liquidus), °C 840
1640
Melting Onset (Solidus), °C 800
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 110
8.2
Thermal Expansion, µm/m-K 20
9.1

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.7
41
Embodied Energy, MJ/kg 46
670
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
1380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 13 to 16
44
Strength to Weight: Bending, points 14 to 17
39
Thermal Diffusivity, mm2/s 35
3.3
Thermal Shock Resistance, points 12 to 16
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 62 to 65
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0 to 0.2
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0
0 to 0.4