MakeItFrom.com
Menu (ESC)

C46200 Brass vs. K93500 Alloy

C46200 brass belongs to the copper alloys classification, while K93500 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is K93500 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 370 to 480
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Melting Completion (Liquidus), °C 840
1430
Melting Onset (Solidus), °C 800
1380
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 2.7
4.7
Embodied Energy, MJ/kg 46
65
Embodied Water, L/kg 330
130

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 13 to 16
17 to 27
Strength to Weight: Bending, points 14 to 17
17 to 23
Thermal Shock Resistance, points 12 to 16
15 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
5.0
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
61.4 to 63
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
32
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 33.3 to 37.5
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.4
0