MakeItFrom.com
Menu (ESC)

C46200 Brass vs. N10624 Nickel

C46200 brass belongs to the copper alloys classification, while N10624 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is N10624 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
220
Elongation at Break, % 17 to 34
45
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
84
Shear Strength, MPa 240 to 290
570
Tensile Strength: Ultimate (UTS), MPa 370 to 480
810
Tensile Strength: Yield (Proof), MPa 120 to 290
360

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 840
1580
Melting Onset (Solidus), °C 800
1520
Specific Heat Capacity, J/kg-K 380
410
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
70
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 46
170
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
300
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
300
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 13 to 16
25
Strength to Weight: Bending, points 14 to 17
22
Thermal Shock Resistance, points 12 to 16
24

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
6.0 to 10
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 62 to 65
0 to 0.5
Iron (Fe), % 0 to 0.1
5.0 to 8.0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
21 to 25
Nickel (Ni), % 0
53.9 to 68
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0