MakeItFrom.com
Menu (ESC)

C46200 Brass vs. S17600 Stainless Steel

C46200 brass belongs to the copper alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17 to 34
8.6 to 11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240 to 290
560 to 880
Tensile Strength: Ultimate (UTS), MPa 370 to 480
940 to 1490
Tensile Strength: Yield (Proof), MPa 120 to 290
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
890
Melting Completion (Liquidus), °C 840
1430
Melting Onset (Solidus), °C 800
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
850 to 4390
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 16
34 to 54
Strength to Weight: Bending, points 14 to 17
28 to 37
Thermal Diffusivity, mm2/s 35
4.1
Thermal Shock Resistance, points 12 to 16
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
71.3 to 77.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.4 to 1.2
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0