MakeItFrom.com
Menu (ESC)

C46200 Brass vs. S35135 Stainless Steel

C46200 brass belongs to the copper alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17 to 34
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 240 to 290
390
Tensile Strength: Ultimate (UTS), MPa 370 to 480
590
Tensile Strength: Yield (Proof), MPa 120 to 290
230

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 840
1430
Melting Onset (Solidus), °C 800
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 20
16

Otherwise Unclassified Properties

Base Metal Price, % relative 24
37
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.8
Embodied Energy, MJ/kg 46
94
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
160
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
130
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 16
20
Strength to Weight: Bending, points 14 to 17
19
Thermal Shock Resistance, points 12 to 16
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 62 to 65
0 to 0.75
Iron (Fe), % 0 to 0.1
28.3 to 45
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.4 to 1.0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0